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Abstract. We present one-dimensional (1D) stability analysis of a recently proposed method to filter and
control localized states of the Bose–Einstein condensate (BEC), based on novel trapping techniques that
allow one to conceive methods to select a particular BEC shape by controlling and manipulating the exter-
nal potential well in the three-dimensional (3D) Gross–Pitaevskii equation (GPE). Within the framework
of this method, under suitable conditions, the GPE can be exactly decomposed into a pair of coupled
equations: a transverse two-dimensional (2D) linear Schrödinger equation and a one-dimensional (1D)
longitudinal nonlinear Schrödinger equation (NLSE) with, in a general case, a time-dependent nonlinear
coupling coefficient. We review the general idea how to filter and control localized solutions of the GPE.
Then, the 1D longitudinal NLSE is numerically solved with suitable non-ideal controlling potentials that
differ from the ideal one so as to introduce relatively small errors in the designed spatial profile. It is shown
that a BEC with an asymmetric initial position in the confining potential exhibits breather-like oscillations
in the longitudinal direction but, nevertheless, the BEC state remains confined within the potential well
for a long time. In particular, while the condensate remains essentially stable, preserving its longitudinal
soliton-like shape, only a small part is lost into “radiation”.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 05.45.Yv Solitons – 05.30.Jp Boson systems – 03.65.Ge Solutions
of wave equations: bound states

1 Introduction

The main feature of a system of identical quantum par-
ticles is that the particles are truly indistinguishable [1].
Due to this property, a system of quantum particles fol-
lows a statistics which differs substantially from the clas-
sical one [2]. The equilibrium distribution of bosons obeys
the well-known Bose–Einstein distribution which differs
from the Mawxell–Boltzmann distribution and predicts
degenerate states. The effects of deviation from the classi-
cal mechanics appear when the thermal de Broglie wave-
length exceeds the mean inter-particle distance (i.e., when
the overlapping of the single–particle wavefunctions takes
place). In particular, in a gas of identical bosons the par-
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ticles may stimulate each other to occupy the lowest en-
ergy state leading to a sort of phase transition called
Bose–Einstein condensation (BEC) [3,4]. The product of
this process is a macroscopic quantum-mechanical object
which can be described by a macroscopic quantum wave-
function. In the recent years, a number of important the-
oretical and experimental investigations on the physics
and possible technological applications of BEC have been
done [5–7]. In particular, a BEC state of 87Rb atoms has
been experimentally achieved for the first time in 1995 [8],
soon followed by similar experiments with 23Na [9] and
7Li [10] atoms. The experimental realization of BEC states
is of a fundamental importance to verify the prediction of
the Bose–Einstein theory. In fact, except for 4He, which is
a superfluid at very low temperature, under the physical
conditions required for the thermodynamical equilibrium
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of the atomic condensate, all other materials are in the
solid state.

It is well known that the Bose–Einstein condensate
has to be created in suitable trapping devices. In fact,
the experimental demonstration of BECs was possible
thanks to the very advanced trapping techniques that use
laser cooling (very efficient for alkali atoms) in combi-
nation with magnetic confinement and evaporative cool-
ing (developed for hydrogen) [11,12]. Very recently devel-
oped techniques involving lithographically fabricated cir-
cuit patterns, which provide electromagnetic guides and
microtraps for ultracold neutral systems of atoms in BEC
experiments [13], have the possibility to produce almost
arbitrary space profiles of the trapping potential. Alter-
natively, the use of optically induced potentials is also ex-
tremely versatile for the production of “exotic” potentials
[14]. Thus, the present technology allows one to design
almost arbitrary potential wells that are needed to reach
a particular goal in a BEC experiment. This possibility
allows one, in turn, to conceive methods to select desired
BEC spatial profiles by manipulating and controlling the
trapping potential well. As shown recently in a theoreti-
cal investigation [15], this kind of filtering and controlling
operation reduces to a few external physical parameters.
This method has been actually employed to filter and con-
trol stationary soliton-like states associated to the longi-
tudinal BEC dynamics.

The three-dimensional (3D) dynamics of BECs in a
spatially nonuniform confining potential well is governed
by the 3D Gross–Pitaevskii equation (GPE) [16], viz.,

i�
∂Ψ(r, t)

∂t
= − �

2

2ma
∇2Ψ(r, t) + U

[
r, t, |Ψ(r, t)|2]Ψ, (1)

where � is the Planck’s constant divided by 2π, Ψ(r, t)
is the macroscopic wavefunction of the condensate, ma

is the atomic mass, the functional U
[
r, t, |Ψ(r, t)|2] =

Vext(r, t) + gN |Ψ(r, t)|2 is the total potential energy,
Vext(r, t) is the external confining potential for BECs, the
coupling constant g is related to the short range scattering
(s-wave) length a representing the interactions between
atomic particles, namely, g = 4π�

2a/ma, and N is the
number of atoms. The short range scattering length a of
atoms can be either positive or negative giving rise to ei-
ther attractive or repulsive forces.

Stationary solutions of equation (1) in one space di-
mension can be cast in the form of solitons [17]. The
formation of bright and dark/grey solitons, observed ex-
perimentally in elongated BECs [18], is attributed to the
attractive as well as repulsive inter-atomic interaction.

Recently, a method to obtain exact localized controlled
solutions of the three-dimensional 3D GPE (1) for ground
and excited states has been proposed [15]. When suitable
external controlling potentials are imposed, the GPE can
be exactly decomposed in a linear two-dimensional (2D)
Schrödinger equation (transverse equation) and a one-
dimensional (1D) nonlinear Schrödinger equation (longi-
tudinal equation).

In this paper, we present a 1D stability analysis of the
controlled BEC solutions obtained in reference [15]. We

perturb around the ideal controlling potential that makes
possible the exact controlled solution. Then, a 1D stability
analysis is performed numerically.

In Section 2, we briefly review the general idea how
to filter and control localized solutions whose dynamics is
governed by the 3D GPE. This idea is applied to BEC to
control longitudinal localized profiles. The time-dependent
wavefunction of the total macroscopic BEC state is factor-
ized in the product of two time-dependent wavefunctions
depending on the longitudinal coordinate, say z (along
which the soliton-like shape has to be created), and the
transverse coordinates, say x and y, respectively. Corre-
spondingly, the 3D GPE is exactly decomposed into a
pair of coupled equations: a 2D linear Schrödinger equa-
tion (LSE) defined on the transverse configurational x− y
plane, plus a 1D nonlinear Schrödinger equation (NLSE)
defined on the configurational z axis. In Section 3, explicit
exact analytical controlled localized 3D solutions of the
BEC, consisting in transverse 2D Hermite-Gauss modes
plus a longitudinal bright soliton, are found and numeri-
cally evaluated. In Section 4, the stability of the control-
ling potential method is numerically tested, confining our
attention to the 1D longitudinal equation. Finally, in Sec-
tion 5 some remarks and the conclusions are presented.

2 The basic idea of filtering and controlling
localized solutions of the 3D GPE

First, we note that under the common experimental con-
ditions in which the external potential is composed of two
parts, viz., Vext(r, t) = V⊥(r⊥, t) + Vz(r⊥, z, t), there ex-
ists a solution of equation (1) that separates the spatial
variables, provided the potential Vz(r⊥, z, t) is appropri-
ately tuned. To show this, first we look for the solution of
equation (1) in the form Ψ(r, z, t) = Ψ⊥(r⊥, t)Ψz(r⊥, z, t),
which permits us to rewrite the GP equation (1) as

Ψ⊥

[
i�

∂Ψz

∂t
+

�
2

2ma

(
∂2

∂z2
+ ∇2

⊥ +
2

Ψ⊥
∇⊥Ψ⊥ · ∇⊥

)
Ψz

− gN |Ψ⊥|2|Ψz|2Ψz − Vz(r⊥, z, t)Ψz

]
=

− Ψz

[
i�

∂Ψ⊥
∂t

+
�

2

2ma
∇2

⊥Ψ⊥ − V⊥(r⊥, t)Ψ⊥

]
. (2)

The function Ψ⊥ is adopted so that it satisfies the following
2D linear Schrödinger equation:

i�
∂Ψ⊥
∂t

+
�

2

2ma
∇2

⊥Ψ⊥ − V⊥(r⊥, t)Ψ⊥ = 0 , (3)

and consequently, the right-hand-side of equation (2) re-
duces to zero.

Next, we note that there exists a particular form of the
potential Vz(r⊥, z, t) that admits purely one dimensional
solutions Ψz (independent of r⊥). An obvious choice for
such potential is

Vz(r⊥, z, t) = V (z, t)+g1D(t)N |Ψz|2−gN |Ψ⊥|2|Ψz|2, (4)
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where V (z, t) and g1D(t) are arbitrary functions of their
arguments. However, the potential (4) is expressed via the
solution for Ψz that is still unknown, and to proceed we
need to solve the GPE (2). The latter, after the substitu-
tion of equation (4), yields:

i�
∂Ψz

∂t
= − �

2

2ma

(
∂2

∂z2
+ ∇2

⊥ +
2

Ψ⊥
∇⊥Ψ⊥ · ∇⊥

)
Ψz

+ g1D(t)N |Ψz |2Ψz + V (z, t)Ψz , (5)

which is considerably easier to solve than the original 3D
GPE. Its coefficients depend only on z and t, and con-
sequently it possesses purely 1D solutions with ∇⊥Ψz =
∇2

⊥Ψz = 0.
One simple choice for the coefficients V (z, t) and

g1D(t) is found if we multiply equation (5) by |Ψ⊥|2 and in-
tegrate over the entire transverse plane, assuming a purely
1D function Ψz and the function Ψ⊥ that satisfies equa-
tion (3). We also assume the usual normalization condi-
tions for Ψ⊥ and Ψz (and consequently for the total wave
function Ψ),

∫
|Ψ⊥|2 d2r⊥ =

∫
|Ψz|2 dz = 1. (6)

Such procedure readily yields the following 1D GPE

i�
∂Ψz

∂t
= − �

2

2ma

∂2Ψz

∂z2
+ g1D(t)N |Ψz |2Ψz +V (z, t)Ψz , (7)

with
g1D(t) = g

∫
|Ψ⊥(r⊥, t)|4d2r⊥ (8)

and

V (z, t) =
∫

Vz(r⊥, z, t)|Ψ⊥(r⊥, t)|2 d2r⊥. (9)

In conclusion, equation (5) provides an exact 1D equation
for Ψz, described by equation (7). This is equivalent to
saying that equation (5) has 1D solutions Ψz = Ψz(z, t) in
such a way that equation (2) admits solutions in the fac-
torized form Ψ(r, z, t) = Ψ⊥(r⊥, t)Ψz(z, t). Equation (7) is
coupled to equation (3) through the nonlinear coupling co-
efficient g1D(t) which depends on the shape of Ψ⊥ and may
be thought of as a functional of Ψ⊥. Additionally, g1D de-
pends on time which makes the longitudinal dynamics of
BEC non stationary. Within this framework, to reach ex-
perimentally stationary longitudinal configurations, some
controlling operations for g1D are necessary.

Filtering and controlling a solution of equation (5)
implies an “a priori” choice of the desired solution, say
Ψ̃z. The latter is adopted within a given family of pos-
sible solutions (e.g. single-soliton solutions, multi-soliton
solutions, periodic solutions, etc.) obeying given initial
conditions. Subsequently, this choice allows us to find the
external potential, say Ṽ (z, t), that self-consistently deter-
mines the solution with such particular initial condition.
The operation of finding the appropriate potential well
implies that V , defined by equation (9), can be thought

of as a functional of Ψz, viz., V [Ψz]. Thus, we first find
the explicit form of such a functional. In turn, we find the
explicit form of Ṽ as a function of z and t, for a given
solution Ψ̃z, i.e., Ṽ (z, t) = V [Ψ̃z(z, t)].

In particular, we want to select from (7) a stationary
bright soliton with the given amplitude AM and length lz.
Consequently, our desired solution is

Ψ̃z = AM sech (z/lz) exp (−iEt/�) , (10)

which obeys the initial condition: Ψ̃z(z, 0) =
AM sech (z/lz). We note that the function (10) is
the solution of the following cubic NLSE

i�∂Ψ̃z/∂t = −(�2/2ma)∂2Ψ̃z/∂z2 + β|Ψ̃z|2Ψ̃z , (11)

where β = −�
2/mal2zA

2
M < 0 and E = −�

2/2mal2z < 0.
In particular, if Ψ̃z is normalized, it follows that AM =
1/

√
2lz and β = −2�/malz.

In order to find the form of the functional V [Ψz], we
note that equations (7) and (11) admit by construction
the same solution that we want to select. Thus, by assum-
ing that Ψz = Ψ̃z, and combining equations (7) and (11),
we easily get the following condition of consistency which
defines the functional V [Ψz], viz.,

V [Ψz ] = [β − g1D(t)N ] |Ψz|2 . (12)

Correspondingly, the explicit dependence in space and
time of Ṽ is given by:

Ṽ (z, t) =

− (�2/mal2z )
[
1 + (maN lz/2�

2) g1D(t)
]

sech2 (z/lz) .
(13)

Note that the external longitudinal potential well is time-
modulated through the factor g1D(t).

It should be noted that just the filtering of our solution
is not sufficient. To ensure its long life, the selected solu-
tion needs to be controlled. This can be done by tuning
the shape of the potential well given by equation (13), i.e.,
by adjusting few external physical parameters that allow
us to produce this shape, in view of using the techniques
described in [13,14]), as well as the function g1D(t) which,
in turn, is given by monitoring and controlling the trans-
verse BEC dynamics (note that the sign of g1D depends
on the sign of the scattering length).

3 Controlled localized BEC solutions
in a transverse harmonic potential well

In this section, we analyze the role of the transverse BEC
dynamics played in controlling the longitudinal dynamics
through the time-dependent parameter g1D(t). As equa-
tion (3) is linear, its arbitrary solution can be expressed as
the linear combination of the corresponding linear eigen-
functions. It is convenient to use a time-dependent com-
plete set of eigenfunctions, which permits us to determine
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the time-dependent parameter g1D(t) in a straightforward
manner.

The transverse external potential that is involved in
BEC experiments is usually parabolic, i.e., V⊥(x, y, t) ≡
ma

[
ω2

x(t)x2 + ω2
y(t)y2

]
/2. Then, in Cartesian coordi-

nates, equation (3) admits the following complete set of
normalized Hermite–Gauss modes:

Ψ⊥nm(x, y, t) = Ψxn(x, t)Ψym(y, t) , (14)

where

Ψjk(j, t) = Hk

[
j/
√

2σj(t)
]

× exp
[−j2/4σ2

j (t) + imaγj(t)j2/2� + iφjk(t)
]

[
2πσ2

j (t)22k(k!)2
]1/4

, (15)

with j = x, y and k = 0, 1, 2, 3, ... The quantities σj(t),
γj(t) and φjk satisfy the following system of equations

d2σj/dt2 + ω2
j (t)σj − �

2/4m2
aσ

3
j = 0, (16)

γj(t) = (1/σj(t))(dσj(t)/dt), φjk(t) = (2k + 1)φj0(t), and
dφj0(t)/dt = −�/4maσ

2
j (t). By virtue of the linearity of

equation (3), an arbitrary normalized solution Ψ⊥ can be
expressed as a linear combination of the above Ψ⊥nm, i.e.
Ψ⊥ = ΣnmcnmΨ⊥nm. Note that Ψj0(j, t) is a purely Gaus-
sian time-dependent fundamental mode associated with
the jth transverse direction and σj(t) is its rms

√〈j2〉 .
Consequently, the transverse effective spot size of the con-
densate can be defined as σ⊥(t) ≡

√
σ2

x(t) + σ2
y(t). The

Pinney equation (16) describes the envelope oscillations of
the condensate along the jth transverse direction within
the quadratic potential well Vj(j, t) = maω2

j (t)j2/2. Note
the full similarity between equation (16) and the one de-
scribing the envelope dynamics of a charged-particle beam
in an accelerating machine [19] through a quadrupole-like
or the envelope dynamics of an electromagnetic radiation
beam in an optical medium [20] through a linear opti-
cal lens, respectively. In these cases, � is replaced by the
transverse beam emittance or by the radiation wavelength,
respectively.

For the sake of simplicity, we assume that the ωj are
independent of time, then equation (16) can be easily in-
tegrated. For the initial conditions σj0 ≡ σj(t = 0) and
γj0 ≡ γj(t = 0), the BEC transverse envelope motion is
described by

σj(t) = σj0

[(
cosωjt +

γj0

ωj
sin ωjt

)2

+
σ∗

j
4

σ4
j0

sin2 ωjt

]1/2

,

(17)
where σ∗

j =
√

�/2maωj . From equation (17) it is evi-
dent that, if γj0 �= 0, BECs execute envelope oscillations
(breathings). Conversely, when γj0 = 0, the jth transverse
BEC state is described by a wavefunction [given for each
integer k by equation (15)] whose rms does not change in
time (stationary state) when σj0 = σ∗

j (matched case), or
it executes oscillations when σj0 �= σ∗

j (unmatched case).

In particular, for k = 0, the transverse state along x and
the one along y are described by the 1D harmonic oscilla-
tor ground state, respectively.

Assuming that, by virtue of equation (15), Ψ⊥ = Ψ⊥nm

we have

g
(nm)
1D (t) ≡ g

∫
|Ψ⊥nm(x, y, t)|4d2r⊥ , (18)

which can be rewritten as

g
(nm)
1D (t) = g δnδm/2π2σx(t)σy(t) , (19)

where

δk =
1

22k(k!)2

∫ ∞

−∞
exp

(−2ξ2
)
[Hk(ξ)]4 dξ. (20)

Let us now discuss how the time dependence of g1D ex-
plicitly affects the control operations when the factorized
solutions (14) is assumed. Having a solution Ψ⊥nm(x, y, t),
one has control tools for the longitudinal soliton solution
of the GPE. These tools are reduced to time-dependent
variable g1D(t). Even if each ωj is independent of time,
each σj(t) is given by equation (17) and therefore depends
on time. Consequently, the external potential well (13) as-
sumes the form:

V (z, t) = − �
2

mal2z

[
1 +

maN lzgδnδm

4π2�2σx(t)σy(t)

]
sech2 (z/lz) .

(21)
Taking into account solutions (14), it is easy to see that
the transverse BEC probability density of matter waves
|Ψ⊥nm(x, y, t)|2 is affected by oscillatory breathers. This
means that the operations of filtering and controlling a
stationary bright soliton of given width must take into ac-
count this effect of transverse BEC “respiration”. It turns
out that, in order to filter and control a longitudinal bright
soliton profile of BEC while preserving its width, one has
to impose an external potential well given by (21), which
takes into account the transverse BEC breathers. In gen-
eral, due to the linearity of equation (3), an arbitrary
transverse BEC state Ψ⊥, which can be expressed as a
superposition of the Hilbert space base {Ψ⊥nm}, should
exhibit similar oscillatory behavior as well. Figures 1–7
clearly show the oscillations of both the BEC transverse
density distributions due to the transverse rms (spot size)
oscillations. While this BEC “respiration” takes place, the
soliton-like BEC longitudinal profile remains unchanged.
For n = m = 0, the 2D transverse BEC cross-section
(transverse spot) is an ellipse whose shape changes peri-
odically as the ratio σx(t)/σy(t) changes in time. In partic-
ular, this ratio, which initially is <1, reaches 1, and subse-
quently becomes >1. For n and/or m greater than 1, there
is more than one transverse spot. For increasing values of
n and m (higher modes), the numbers of transverse spots
increase correspondingly and the time evolution of all the
transverse spots shows the oscillatory behavior.



S. De Nicola et al.: 1D Stability analysis of filtering and controlling the solitons in BEC 117

Fig. 1. Cross sections of the BEC transverse probability den-
sity |Ψ⊥00|2 at z = 0 and different times : t1 = 3.14/3ωx (a),
t2 = 6.28/3ωx (b), t3 = 3.14/ωx (c), and t4 = 12.56/3ωx (d),
t5 = 15.70/3ωx (e), t6 = 6.28/ωx (f). Calculations refer to
ω ≡ ωy/ωx = 0.5, σ∗

x/lz = 0.5, σ∗
y/lz = σ∗

x/lz
√

ω = 1/
√

2.
Normalized transverse widths are σx0/lz = 0.5 and σy0/lz = 1;
γx0/ωx = 0.5 and γy0/ωy = 1.

Fig. 2. Cross sections of the BEC transverse probability den-
sity |Ψ⊥01|2 at z = 0 and different times : t1 = 3.14/3ωx (a),
t2 = 6.28/3ωx (b), t3 = 3.14/ωx (c), and t4 = 12.56/3ωx (d),
t5 = 15.70/3ωx (e), t6 = 6.28/ωx (f). Calculations refer to
ω ≡ ωy/ωx = 0.5, σ∗

x/lz = 0.5, σ∗
y/lz = σ∗

x/lz
√

ω = 1/
√

2.
Normalized transverse widths are σx0/lz = 0.5 and σy0/lz = 1;
γx0/ωx = 0.5 and γy0/ωy = 1.

Fig. 3. Cross sections of the BEC transverse probability den-
sity |Ψ⊥10|2 at z = 0 and different times : t1 = 3.14/3ωx (a),
t2 = 6.28/3ωx (b), t3 = 3.14/ωx (c), and t4 = 12.56/3ωx (d),
t5 = 15.70/3ωx (e), t6 = 6.28/ωx (f). Calculations refer to
ω ≡ ωy/ωx = 0.5, σ∗

x/lz = 0.5, σ∗
y/lz = σ∗

x/lz
√

ω = 1/
√

2.
Normalized transverse widths are σx0/lz = 0.5 and σy0/lz = 1;
γx0/ωx = 0.5 and γy0/ωy = 1.

Fig. 4. Cross sections of the BEC transverse probability den-
sity |Ψ⊥11|2 at z = 0 and different times : t1 = 3.14/3ωx (a),
t2 = 6.28/3ωx (b), t3 = 3.14/ωx (c), and t4 = 12.56/3ωx (d),
t5 = 15.70/3ωx (e), t6 = 6.28/ωx (f). Calculations refer to
ω ≡ ωy/ωx = 0.5, σ∗

x/lz = 0.5, σ∗
y/lz = σ∗

x/lz
√

ω = 1/
√

2.
Normalized transverse widths are σx0/lz = 0.5 and σy0/lz = 1;
γx0/ωx = 0.5 and γy0/ωy = 1.
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Fig. 5. Cross sections of the BEC transverse probability den-
sity |Ψ⊥12|2 at z = 0 and different times : t1 = 3.14/3ωx (a),
t2 = 6.28/3ωx (b), t3 = 3.14/ωx (c), and t4 = 12.56/3ωx (d),
t5 = 15.70/3ωx (e), t6 = 6.28/ωx (f). Calculations refer to
ω ≡ ωy/ωx = 0.5, σ∗

x/lz = 0.5, σ∗
y/lz = σ∗

x/lz
√

ω = 1/
√

2.
Normalized transverse widths are σx0/lz = 0.5 and σy0/lz = 1;
γx0/ωx = 0.5 and γy0/ωy = 1.

Fig. 6. Cross sections of the BEC transverse probability den-
sity |Ψ⊥21|2 at z = 0 and different times : t1 = 3.14/3ωx (a),
t2 = 6.28/3ωx (b), t3 = 3.14/ωx (c), and t4 = 12.56/3ωx (d),
t5 = 15.70/3ωx (e), t6 = 6.28/ωx (f). Calculations refer to
ω ≡ ωy/ωx = 0.5, σ∗

x/lz = 0.5, σ∗
y/lz = σ∗

x/lz
√

ω = 1/
√

2.
Normalized transverse widths are σx0/lz = 0.5 and σy0/lz = 1;
γx0/ωx = 0.5 and γy0/ωy = 1.

Fig. 7. Cross sections of the BEC transverse probability den-
sity |Ψ⊥22|2 at z = 0 and different times : t1 = 3.14/3ωx (a),
t2 = 6.28/3ωx (b), t3 = 3.14/ωx (c), and t4 = 12.56/3ωx (d),
t5 = 15.70/3ωx (e), t6 = 6.28/ωx (f). Calculations refer to
ω ≡ ωy/ωx = 0.5, σ∗

x/lz = 0.5, σ∗
y/lz = σ∗

x/lz
√

ω = 1/
√

2.
Normalized transverse widths are σx0/lz = 0.5 and σy0/lz = 1;
γx0/ωx = 0.5 and γy0/ωy = 1.

4 1D stability analysis of BEC control
procedures

Under realistic experimental conditions, one may expect
that the controlling potential V is realized with a certain
error relative to its desired form, given by equation (13).
It is necessary to investigate the dynamics of BECs in
such nonideal traps and, in particular, to check whether
they remain stable. For this reason, we solve numerically
the longitudinal GPE (7), adopting Ψz different from the
ideal shape, i.e., equation (13). Obviously, there exists a
broad range (an entire spectrum) of possible errors but,
in a realistic experiment, it is reasonable to expect that
it has the typical form of a bell-shaped well, similar to
equation (13), and that the error will be mostly in the
depth and width of such a well. Furthermore, the initial
position of the BEC may be asymmetric, which leads, as
we show below, to breather-like oscillations also in the
parallel direction.

Our numerical results are displayed in Figure 8. They
are obtained with the controlling potential in the form:

Verr = −α1
�

2

ml2z

(
1 +

mN lz
2�2

g1D

)
sech2

(
α2

z − z0

lz

)
.

(22)
i.e. similar to the ideal controlling potential, equation (21),
but with the errors in the depth and width of the po-
tential well, as well as in its initial position relative to
the BEC. Adopting g1D = const., corresponding to the
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Fig. 8. The temporal evolution of |Ψz (z, t) |. The “error pa-
rameters” are adopted as α1 = 0.9 and α2 = 2, and the initial
displacement of the soliton is z0/lz = 0.2. The normalizations
used are t → t �/2ml2z, z → z/lz, and Ψz → Ψz/lz

matched case (σ0j = σ∗
j and γ0j = 0), the “error pa-

rameters” α1 and α2 in the range 0.8–2.2, and the ini-
tial displacement z0 ∼ 0.2lz, we obtained solutions that
remained confined inside the controlling potential for a
long time (t > 100 �/g1DN) exhibiting longitudinal os-
cillations. Only a small part of the condensate (<10%)
was lost due to “radiation”, while the most part of BEC
remained stable and preserved its shape. The ripples at
the base of the soliton in Figure 8 are the consequence
of the “radiation” that is reflected back due to the im-
posed period boundary conditions in the variable z, while
the ruggedness of the central maximum comes from the
oscillations of the soliton inside the confining potential.

5 Remarks and conclusions

We have presented a 1D stability analysis of a recently
proposed method to filter and control the localized states
of BEC, which seems to be possible thanks to the very
recently developed techniques by controlling and manip-
ulating the external potential well appearing in the 3D
GPE. Exact controlled analytical solutions of the 3D GPE
in suitable external potential wells for the ground and ex-
cited states have been found and numerically evaluated.
By looking for factorized solutions, the 3D GPE is ex-
actly decomposed into a pair of coupled equation: a trans-
verse 2D LSE plus a 1D longitudinal GPE. It has been
shown that, while the controlled BEC longitudinal profile
is a bright soliton, the transverse one exhibits oscillatory
breather effects. Suitable matching conditions to control
this transverse BEC “respiration” have been established.

Furthermore, in the matched case (σj0 = σ∗
j and

γj0 = 0), for which the transverse BEC dynamics does
not exhibit oscillations, the nonlinear coupling coefficient
of the longitudinal NLSE does not depend on time. Then,
the numerical integration of the longitudinal NLSE has
shown breather-like oscillations of a BEC with asymmet-
ric initial position in a confining potential that differs in
shape from the ideal one. Additionally, a relatively small
deviation from the ideal controlling potential will not re-

sult in destruction of the system. However, the present
1D stability analysis has been carried by perturbing the
confining potential Ṽ (z, t), which is the average (in the
transverse plane) of the external potential Vz(r⊥, z, t), ap-
pearing in equation (5).

A more complete 3D stability analysis, including 3D
numerical simulations, is under way and it will be consid-
ered in a future work. We expect that, in a fully 3D case,
a crucial role is played by the filamentation and collapse
instabilities. So, suitable conditions for the interplay be-
tween such instabilities and the controlling aspects have
to be established.
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Zh. Éksp. Teor. Fiz. 80, 609 (2004)]; R. Fedele, P.K.
Shukla, S. De Nicola, M.A. Man’ko, V.I. Man’ko, F.S.
Cataliotti, Phys. Scr. T116, 10 (2005)

16. E.P. Gross, Nuovo Cimento 20, 454 (1961); L.P. Pitaevskii,
Sov. Phys. JETP 13, 451 (1961)

17. F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999); L.
Salasnich, A. Parola, L. Reatto, Phys. Rev. A 66, 043603
(2002)

18. S. Burger et al., Phys. Rev. Lett. 83, 15198 (1999); E.A.
Donley et al., Nature 412, 295 (2001); B.P. Anderson
et al., Phys. Rev. Lett. 86, 2926 (2001); K.E. Strecker et
al., Nature 417, 150 (2002); L. Khaykovich et al., Science
296, 1290 (2002); B. Eiermann et al., Phys. Rev. Lett. 92,
230401 (2004)

19. J. Lawson, The Physics of Charged Particle Beams, 2nd
edn. (Clarendon, Oxford, 1988) and references therein

20. S. Solimeno, B. Crosignani, P. Di Porto, Guiding,
Diffraction, and Confinement of Optical Radiation
(Academic Press, Orlando, 1986) and references therein


